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The internal structure of systems of particles in a liquid is stud- 5 mm in the case of the light scattering method. They are
ied with a novel NMR technique based on the measurement of the inefficient for systems with a larger characteristic size such
squared modulus of the magnetization in presence of a pulsed field as non-Brownian suspensions, porous media, and fluidized
gradient. The formalism is analogous to the one used in classical beds. In this paper, we show that information about the
scattering techniques ( light, X-rays, neutrons) ; it allows similar structure of systems with a characteristic size larger than 10
information to be obtained about the structure ( in particular, the

mm can be gained with NMR, the pair correlation functionstructure factor S (q ) ) . The main improvement is that the range
being derived with a formalism analogous to the classicalof particles sizes is 10 mm to 1 mm, as compared with the range
scattering techniques.of the scattering techniques (õ5 mm). The NMR technique was

The pulsed field gradient spin-echo (PFGSE) NMR tech-validated by studying packings of spherical particles of mean di-
ameter 240 mm created by sedimentation. The profile of the experi- nique has been used for many years to study diffusion and
mental squared modulus of the magnetization versus the wave flow in porous media. This method provides information
vector provides results for the mean size of particles and the com- about the microstructure in the host material when bound-
pacity. The main feature is that it depends on the pair distribution aries hinder normal diffusive transport (4) . Recent works
function, and the present results are in good agreement with a point out that the distribution of probability of the molecular
model based on the Percus–Yevick approximation. This technique displacements P(Dz , t) , along the z axis, during an interval
is then particularly adapted to systems such as non-Brownian

of time t , can be obtained using the PFGSE sequence; thesuspensions, fluidized beds, porous media, and sediments. q 1998
echo signal M1 being a function of the intensity of the fieldAcademic Press

gradient G , the probability P(Dz , t) then appears as the
Fourier transform of M1(G) . This technique has been intro-
duced by K. Fukuda and A. Hirai (5) in order to find the axialINTRODUCTION
distribution of probability of velocity in a liquid flowing in
a cylindrical channel, then by J. Kärger and W. Heink (6)The techniques of light scattering, small-angle X-ray scat-
to study the n-hexane diffusion in a loose assemblage oftering, and small-angle neutron scattering are currently used
NaX zeolite crystallites. The analogy between NMR in theto characterize colloidal systems. These techniques are use-
presence of a pulsed field gradient and diffraction wasful to determine the size of dispersed particles in a solvent
pointed out by P. Mansfield and P. K. Grannel (7) in theand the structure of a colloidal system through the pair corre-
context of NMR imaging. More recently, diffraction-likelation function 1 0 g(r) , where g(r) is the pair distribution
effects in PFGSE experiments have been discussed for thefunction defined as the density of probability to find a couple
diffusion both in connected structures (8) and in imperme-of particles separated by a distance r . However, all three
able structures (9) . It was also demonstrated by D. G. Corytechniques have limited ranges of application (1–3) , the
and N. Garroway (9) that when boundaries hinder normalaccessible length scales being related to the range of values
diffusive transport of the particles, the distribution of dis-of the scattering wave vector which can be scanned (1002

placements P(Dz , t) then approaches the fluid density auto-Å01 õ q õ 2 Å01 by X-ray scattering; 1003 Å01 õ q õ 2
correlation function in the container for large values of theÅ01 by neutron scattering; 2 1 1005 Å01 õ q õ 2 1 1003

duration t of the NMR sequence. Thus, in the case of re-Å01 by light scattering). These techniques are thus adapted
to systems with particles of small size, the maximum being stricted motion in an enclosed pore, PFGSE experiments are
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288 TALINI, LEBLOND, AND FEUILLEBOIS

mathematically similar to the experiments of optical diffrac-
tion through a single slot. P. T. Callaghan et al. (10) have
independently developed this analogy for porous media with
connected pores, in which a spin-bearing molecule originat-
ing in one pore can migrate to other pores. Provided the
time scale for the diffusion within pores is much shorter
than for the diffusion between pores, P(Dz , t) becomes the
product of the pore density by the probability of jumps be-
tween pores; in an assembly of monodisperse polystyrene
spheres where the pore spacing is roughly equal to the sphere
diameter (18.8 mm), the PFGSE–NMR experiments are
used to obtain by a Fourier transform the ‘‘image’’ of the
pore autocorrelation function convoluted with diffusion-

FIG. 1. Measurement zone of the spectrometer.
weighted three-dimensional lattice correlation function. In a
recent work, G. A. Barral et al. (11) have used NMR im-
aging to obtain the density autocorrelation function in struc-

particles. We then consider in the second section the particu-tural materials. For NMR imaging, the spatial information
lar case of a homogeneous suspension. The technique isis encoded by applying a magnetic gradient field G during
applied to packings of spheres created by sedimentation. Thea time t . A particle situated at a position r then induces a
experimental procedure and results are then presented in thephase shift krr , k being the wave vector defined as
third section. The experimental result for the pair distribution
function is compared to the one obtained by the Percus–k Å grGr t , [1]
Yevick theory in the fourth section.

where g is the gyromagnetic ratio for the proton.
MAGNETIZATION OF A SUSPENSION IN A PULSEDThe volumic density of nuclei r(r) is extracted by a Fou-

FIELD GRADIENTrier transform of the signal M(k) considered as a function
in k-space. Applying the Wierner–Khintchin theorem, the

Consider a suspension of particles in a liquid rich in pro-authors have shown that the density autocorrelation function
tons. When a magnetic field is applied to the suspension,is related to M(k) by
the main resulting magnetization is that of the liquid. The
following formulation is valid for particles of any shape but
will later be specialized to spheres.»r(r)rr(r/Dr) …Å 1

(2p)3V * ÉM(k)É2e ikrD rdk , [2]
A simplified representation of the spectrometer is shown

in Fig. 1. The sample is placed in a vertical tube of diameter
DÅ 1 cm. A superconducting coil creates a vertical magneticwhere V is the measurement volume and » … denotes an

average over all possible positions within the sample volume field B0 Å 2.35 T and induces a macroscopic magnetization
in the sample. In the center of this coil, an NMR saddle coilV . By definition, »r(r)rr(r / Dr) … is the Patterson func-

tion, which is characteristic of the structure. This concept is placed around the tube to deliver radiofrequency pulses
at the resonance frequency of protons and to detect the mag-was applied to the study of nylon monofilament fibers packed

in glass tubes filled up with water, the fibers being in a netization. The saddle coil influences the volume V Å 0.5
cm3 of a cylinder of radius r Å 0.4 cm and height h Å 1vertical position. Using a slice NMR imaging technique,

Barral et al. obtain the Patterson function of the image of a cm which defines the measurement zone. The gradient field
pulses are provided by a quadrupole gradient coil perpendic-radial slice of the fibers by measuring the modulus of the

signal. ular to the tube that generates a vertical pulsed field gradient
G of up to 0.88 T/m. The NMR sequence is described inIn this paper, we show that systems with particles of any

shape, possibly in motion, can be studied by NMR in pres- Fig. 2. At an initial time ti , an impulse tilts the magnetization
onto the horizontal plane in the direction of the x axis. It isence of a pulsed field gradient. The formalism being similar

to one of the classical scattering methods, we can obtain followed by a constant pulsed gradient field. The signal de-
tected in the radiofrequency coil immediately after the in-information about the size and shape of particles, and about

the structure of the system through the pair distribution func- stant ti is proportional to the magnetization inside the coil.
r(r , ti ) is the spin density of protons in the suspension attion. It is shown in the first section how this function can

be obtained by studying the squared modulus of the signal. time ti , and f (r) the apparatus function which describes the
sensibility map of the radiofrequency coil. This function isThe presentation is specialized here to the case of spherical
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289PFG NMR TECHNIQUE FOR DETERMINING INTERNAL STRUCTURES

where r0 is the spin density of particle-free liquid, and hj(r
0 rj) is a characteristic function defined as

hj(r 0 rj , ti ) Å 0

if r corresponds to a point in the liquid

hj(r 0 rj , ti ) Å 1

if r corresponds to a point in a particle.

We can remark that hj depends on the shape of particles and
is therefore different for each particle in the most general
case.

FIG. 2. NMR sequence considered for the calculation includes a p /2
By substituting the spin density given by Eq. [5] into Eq.impulsion and a constant field gradient simultaneously.

[4] , we obtain

M(k , ti ) Å r0( fH (k) 0 MS(k , ti )) , [7]
normalized so the maximum value is 1. The expression for
the magnetization of the measurement zone at time ti then where f̃ (k) is the Fourier transform of the apparatus func-
is tion:

M( ti ) Å *
E

r(r , ti ) f (r)dr , [3] fH (k) Å *
E

f (r)e irkrrdr [8]

where E is the whole space. and MS(k , ti ) , with r * Å r 0 rj , is given by
When a pulsed field gradient G is applied starting from

time ti , the magnetization at time ti / t is (8) MS(k , ti )

Å ∑
N

jÅ1

e irkrr j *
E

f (r * / rj)h(r *, ti )e irkrr =dr * . [9]M(k , ti ) Å *
E

r(r , ti ) f (r)e irkrrdr . [4]

In the integral of the previous equation, the function h(r ,The movements of protons during t are thereby neglected,
ti ) is nonzero inside the volume £j of particle j ; hence, theand the wave vector k Å grGrt is introduced, where g is
integration is reduced to the volume £j . However, since £j isthe gyromagnetic constant of the proton. The magnetization
much smaller than the measurement volume V, the apparatusappears in Eq. [4] as the Fourier transform of the product
function defining V may be taken as constant in £j , whichof the spin density and the apparatus function. There is here
yieldsan analogy with the techniques of light, neutron, and X-ray

scattering in which the scattered amplitude appears as the
f (r * / rj) Å f(rj) . [10]Fourier transform of the volumic polarizability, density of

scattering length, and density of electrons, respectively [see,
Using this expression, the magnetization can be written ase.g., (1) , (2) , (3)] . These classical techniques give informa-

tion about the structure of dispersed media by studying the
squared modulus of the scattered amplitude. In a similar M(k , ti ) Å r0 fH (k) 0 r0 ∑

N

jÅ1

£jFH (k , j)e irkrr j f (rj) , [11]
way, the squared modulus of the magnetization may provide
a characterization technique for the structure of the suspen-
sion. For this purpose, we first calculate the magnetization where £j F̃(k , j) is the Fourier transform of hj(r , ti ) :
due to an ensemble of particles in a liquid.

Assuming that the protons are only in the liquid, the proton
£jFH (k , j) Å *

E

hj(r)e irkrrdr . [12]spin density of the suspension is

Henceforth, F̃(k , j) is called the form factor of particle j . Wer(r , ti ) Å r0 S1 0 ∑
N

jÅ1

hj(r 0 rj , ti )D , [5]
shall now simplify the calculation by considering spherical
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290 TALINI, LEBLOND, AND FEUILLEBOIS

particles of the same size. The form factor has then a classi- and another one linked to the structure,
cal form well known in the light scattering literature:

K∑
N

jÅ1

∑
N

iÅ1

e irkr (r j0ri ) f (rj) f (ri )L . [18]

FH (kR) Å 3
sin kR 0 kR cos kR

(kR)3 , [13]

In order to calculate the ensemble average in Eq. [17],
we introduce the statistical average particle density, denotedwhere R is the radius of spheres and k the modulus of the
n(r) :wave vector k . The expression for the magnetization of a

monodisperse suspension of spherical particles is eventually

K∑
N

jÅ1

e0 irkrr jr f (r j)L Å *
E

n(r) f (r)e0irkrrdr . [19]
M(k , ti ) Å r0 fH (k) 0 r0£FH (kR) ∑

N

jÅ1

e irkrr j f (rj) . [14]

Let us also define

Squaring the modulus of the magnetization in Eq. [14],
m(r) Å n(r)r f (r) [20]we obtain

and its Fourier transform:ÉM(k , ti )É2

Å r 2
0 ÉfH (k)É2 0 2r 2

0£FH (kR)Re
mI (k) Å *

E

m(r)e irkrrdr . [21]
1 S fH (k) ∑

N

jÅ1

e0 irkrr j f (rj)D / r 2
0£

2FH 2(kR)

In this notation, the ensemble average of the cross term may
be written as1 ∑

N

jÅ1

∑
N

iÅ1

e irkr (r j0ri ) f (rj) f (ri ) , [15]

Mc Å 02r 2
0£FH (kR)Re( fH (k)rmI *(k)) , [22]

where Re ( ) represents the real part. The first term is
the signal of the particle-free liquid. By analogy with the where m̃*(k) is the conjugate of m̃(k) .
scattering techniques, it corresponds to the nonscattered We have to calculate the ensemble average in Eq. [18],
signal. The second term is called the ‘‘cross term.’’ The which can be written as a sum of two terms:
last term is the important part of the signal, the one that
gives information about the internal structure; it is called K∑

N

jÅ1

∑
N

iÅ1

e irkr (r j0ri ) f (r j) f (ri)Lthe ‘‘structure signal.’’
The expression Eq. [15] depends on the configuration of the
spheres. It appears as a picture of the system. A quantity Å K∑

N

iÅ1

f (ri)
2L/ K∑

N

jÅ1

∑
N

ixj

e irkr (r j0ri ) f (r j) f (ri)L . [23]
more adapted to a set of experiments is obtained by averag-
ing Eq. [15] over all possible configurations of particles for
the system. This ensemble average is denoted » … and the Let the two terms on the right-hand side be Ms1 and Ms2 .
mean squared modulus of the magnetization is written as The first term is the ensemble average of the function

[ f (r)]2 , which we denote as N,
»ÉM(k , ti )É2

…

Ms1 Å N, [24]Å r 2
0r ÉfH (k)É2 0 2r 2

0£FH (kR)Re

where1 S fH (k) K∑
N

jÅ1

e0 irkrr jr f (rj)LD / r 2
0£

2FH 2(kR)

N Å *
E

[ f (r)]2n(r)dr . [25]1 K∑
N

jÅ1

∑
N

iÅ1

e irkr (r j0ri ) f (rj) f (ri )L . [16]

The second term, Ms2 , depends upon the position of two
Two different sums of exponentials appear: in the cross term, particles. It is then useful to introduce the probability n(r1 ,

r2)dr1dr2 to find simultaneously a sphere center in the vol-
ume dr1 in the vicinity of position r1 , and another one insideK∑

N

jÅ1

e0 irkrr jr f (rj)L , [17]
the volume dr2 in the vicinity of position r2 . The relative
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291PFG NMR TECHNIQUE FOR DETERMINING INTERNAL STRUCTURES

ordering of particles in the suspension is assumed to be Collecting the averaged cross term Eq. [22] and the struc-
ture signal Eq. [32] into Eq. [16], the general expression ofsufficiently homogeneous inside the measurement volume

(excluding wall effects) for the pair probability density n(r1 , the averaged squared modulus of the magnetization becomes
r2) to be written as a product of average particle densities
at r1 , r2 and a function depending only on the relative posi- »ÉM(k , ti )É2

…

tion of the two sphere centers, r2 0 r1 :
Å r 2

0r( ÉfH (k)É2 0 2£FH (kR)Re( fH (k)rmI *(k))

n(r1 , r2) Å n(r2)rn(r1)rg(r2 0 r1) . [26] / £
2FH 2(kR)ÉmI (k)É2) / r 2

0£
2FH 2(kR)

1SN 0 *
E

(1 0 g(r))A(r)e irkrrdrD . [33]Here, g is the pair distribution function, a fundamental pa-
rameter of the internal structure of dispersed media.
Let

This equation can be further reduced to

ri Å r *
»ÉM(k , ti )É2

…

rj 0 ri Å r . [27]
Å r 2

0rÉ( fH (k) 0 £FH (kR)mI (k)É2 / r 2
0£

2FH 2(kR)

Using Eq. [26] and variables r and r*, the second term in
1 SN 0 *

E

(1 0 g(r))A(r)e irkrrdrD . [34]Eq. [23] becomes

This result is valid for a suspension of monodisperse spheri-Ms2 Å *
E
*

E

e irkrrm(r / r *)m(r *)g(r)drdr *. [28]
cal beads. We also assumed that the pair probability is of
the form of Eq. [26], neglecting the wall effects, and keeping

We assume that distant particles are uncorrelated: only pair interactions. The analogy with the light scattering
is obvious. Since the first term in Eq. [34] is the analogue

lim
\r\r`

g(r) Å 1. [29] of the nonscattered rays, we call it the direct signal. The
second term is similar to the I(q) intensity function (2) . In
that case k is simply replaced by q in the expressions, andThis property leads us to introduce g(r) 0 1 in the expres-
the squared form factor F̃ 2(qR) is multiplied by the structuresion of Ms2 :
factor S(q) Å N / *

E
[1 0 g(r)]A(r)eirqrrdr . The structure

factor denoted S(q) for the scattering techniques and S(k)Ms2
for the NMR technique describes the microscopic structure
through the pair distribution function g(r) .Å *

E
*

E

e irkrrm(r / r *)m(r *)drdr * / *
E
*

E

PARTICULAR CASE OF A HOMOGENEOUS1 e irkrrm(r / r *)m(r *)(g(r) 0 1)drdr *. [30]
SUSPENSION

The first term in the right-hand side is the squared modulus
In order to further simplify the problem, the suspensionof the Fourier transform of the function m(r) . In the second

is now assumed to be homogeneous, that is, the numberterm, we remark the autocorrelation function of m(r) defined
density of particles in the suspension is constant,as

n Å N

V
Å f

£

, [35]A(r) Å *
E

m(r / r *)m(r *)dr *. [31]

where f is the volume fraction.Finally, the mean structure signal ( the last term in Eq. [16]) ,
In this case, m(r) Å nf (r) , and Eq. [34] becomesdenoted MSt Å r 2

0£
2FH 2(kR)(MS1 / MS2) , is written

»ÉM(k , ti )É2
…MSt

Å r 2
0 ÉfH (k)É2((1 0 fFH (kR)))2 / r 2

0£fFH 2(kR)Å r 2
0£

2FH 2(kR)ÉmI (k)É2 / r 2
0£

2FH 2(kR)N

1 SF(0) 0 f

£
*

E

(1 0 g(r))F(r)e irkrrdrD , [36]0 r 2
0£

2FH 2(kR) *
E

(1 0 g(r))A(r)e irkrrdr . [32]
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292 TALINI, LEBLOND, AND FEUILLEBOIS

where F(r) is defined as the autocorrelation function of
f (r) :

F(r) Å *
E

f (r / r *) f (r *)dr *. [37]

We already assumed that distant particles are uncorrelated
(Eq. [29]) . More strictly, we assume here that the correla-
tion length is short compared to the cell dimensions. This
is usually the case of settling dilute suspensions of spheres
(12) . It is intuitive that the correlation length decreases with
increasing concentration. Thus, in the lack of evidence of

FIG. 3. Comparison between the amplitudes of the direct signal propor-the contrary, we also take the assumption that the correlation
tional to f̃ (kh) 2 Å sinc2(kh /2) (1) , and the structure signal proportionallength is short in a random packing of spheres. Conse-
to the squared form factor F̃(kR)2 (2) . (a) F̃(kR) 2 and 50 sinc2(kh /2) .

quently, the integral in Eq. [36] is nonzero in a volume (b) F̃(kR) 2 and 105 sinc2(kh /2) .
where the function f (r) is constant in a first approximation.
Hence, we can write f (r / r *)á f (r *) , and for the autocor-
relation function F(r) ,

F(0) Å V . [42]

F(r) á F(0) . [38]
Equation [39] can be written as

Finally, we obtain
»ÉM(k , ti )É2

…

Å r 2
0V

2 fH 2(kh)((1 0 fFH (kR)))2 / r 2
0£V fFH 2(kR)»ÉM(k , ti )É2

…

Å r 2
0 ÉfH (k)É2 ((1 0 fFH (kR)))2 / r 2

0£fFH 2(kR)F(0) 1 S1 0 f

£
*

E

(1 0 g(r))e ikzdrD . [43]

1 S1 0 f

£
*

E

(1 0 g(r))e irkrrdrD . [39]
The order of magnitude of the direct signal is r2

0V
2 fH 2(kh)

and that of the structure signal is r 2
0£V fFH 2(kR) . The ratio

As the field gradient G is vertical in the experiments, krr of the direct signal to the structure signal can then be esti-
is replaced by krz in Eq. [39]. mated to be of order V /£f. For a suspension of spheres

Consider now the apparatus function f (r) . As a first step, of diameter 240 mm with a volume fraction of 10%, in a
let us assume that f (r) is the characteristic function of a measurement zone of volume V Å 0.5 cm3, this ratio is equal
cylinder of height h and diameter D , that is, in cylindrical to 7 1 105. Thus, the interesting part of the squared modulus
coordinates, f (z , r, u) : of the magnetization is very small when compared with the

peak of the direct signal. Moreover, the Fourier transform
of a cylindrical apparatus function is a cardinal sine (Eq.
[41]) , that is, strongly oscillating. The structure signal is

f (z)Å 1 if0 h

2
° z° h

2
and r°D

2
;

f (z)Å 0 if zú h

2
or zõ0 h

2
and r°D

2
.

[40] then screened by the oscillations of the direct signal, as
shown in Fig. 3. Hence, a ‘‘cylindrical’’ apparatus function
would not be adapted to the analysis of the structure signal.
The actual apparatus function f (r) can be measured by

Then the Fourier transform of f (r) is given by a ‘‘cardinal NMR, using the same sequence with a sample of particle-
sine’’ function: free liquid. The expression for the magnetization then boils

down to consider f Å 0 in Eq. [11]:
fH (k) Å VfH (kh) , [41]

M(k , ti ) Å r0 fH (k) . [44]
where f̃ (kh) Å sinc(kh /2) .

The volume V is that of the measurement zone (V Å p(D / That is, the magnetization is the Fourier transform of f (r)
with a multiplicative constant. With the present experimental2)2h) . Hence, the autocorrelation function F(0) has a simple

form: setup, the apparatus function only varies along the vertical
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corresponds to a minimum size of 5 mm. On the other hand,
we have assumed until now that the spins in the liquid are
fixed during the application of the field gradient (duration
t) . This hypothesis implies that the movement of the liquid
during t is small compared with the diameter of the particles.
In particular, the displacement of the liquid due to the ther-
mal agitation must be negligible,

√
2D0t ! d , [45]

where D0 is the coefficient of self-diffusion of the water
and d is the diameter of the particles. With a maximumFIG. 4. Experimental result for the apparatus function f (z) which is
duration of 10 ms the condition on the particles diametercharacteristic of the spatial sensitivity of the detection coil along the z axis.
is d ú 12 mm.The apparatus function is normalized so that the maximum value is 1.

In conclusion, the range of accessible sizes by the NMR
technique is 10 mm to 1 mm. It completes the range of usual

z and can be described by f (z) . The experimental result for scattering techniques as shown in Fig. 5. This technique is
f (z) is illustrated in Fig. 4. The general shape is similar therefore particularly adapted to media with characteristic
to a Gaussian; thus, the Fourier transform f̃ (k) has lower sizes of about 100 mm, such as suspensions of non-Brownian
oscillations than the Fourier transform of a cylindrical form spheres.
and does not screen the structure signal.

We therefore established that the NMR technique using EXPERIMENTAL PROCEDURE AND RESULTS
a pulsed field gradient is efficient in the study of dispersed
media containing particles embedded in a liquid, such as In order to test the experimental technique, we have cho-
suspensions. The signal is created by the liquid but gives sen to study here packings of hard spheres, then avoiding
information about the particles and their configuration. The problems due to the displacement of particles. Note that it
method consists in following the evolution of the magnetiza- would also be possible to study systems in motion such as
tion during the application of a constant gradient field. The suspensions or fluidized beds, provided the displacements
squared modulus of the magnetization then depends on mi- during the NMR sequence are negligible compared with the
croscopic characteristics of the system, such as the mean size diameter of the particles. The particles used are polymer
of particles and the Fourier transform of the pair distribution beads of mean diameter 240 mm, and a size standard devia-
function. The expression of the averaged squared modulus tion of 10 mm. The liquid, an alkylbenzyl phthalate, is a
of the magnetization is similar to the one of the scattered plasticizing liquid manufactured by Monsanto. It is appro-
intensity of the techniques of light, small-angle X-ray scat- priate to the study of suspensions because of its large viscos-
tering, and small-angle neutron scattering, but NMR allows ity (1300 times the viscosity of water at 277C) and its New-
study of systems of larger dimensions. tonian behavior when submitted to a weak shear flow. The

The classical scattering methods are indeed efficient for
particles with a maximum size of 5 mm. For the NMR tech-
nique, the range of accessible particle sizes can be estimated
as follows. The largest size is fixed by the measurement
volume, which corresponds to the range of efficiency of the
detection coil. In the experiment, this volume being a cylin-
der of height h Å 1 cm, it would be difficult to study systems
with a particle size larger than about 1 mm. The smallest
size corresponds to the largest wavenumber k in Fourier
space, and since kÅ gGt , it corresponds to the largest practi-
cally feasible duration t for the NMR sequence. First, the
NMR signal decreases because of longitudinal and trans-
verse relaxations (characterized by two relaxation times T1

and T2) and heterogeneities of the magnetic field in the
measurement zone. In the experiment, the transverse relax-
ation time T*2 (which is a combination of T2 and the effects FIG. 5. Range of particle sizes accessible by the NMR technique as

compared with the other classical scattering techniques.of heterogeneities of the magnetic field) is about 10 ms. It
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FIG. 7. Free induction decay. The real part of the magnetization ob-FIG. 6. The gradient echo sequence used in the NMR experiment.
tained without a pulsed field gradient is represented as a function of the
time (kÅ grGr t) . (a) Experimental curve with oscillations. (b) Corrected
experimental curve without oscillations.liquid and beads are in glass tubes of inner diameter 0.8 cm.

After mixing with a metallic rod, we wait for 24 h for the
spheres to settle to the bottom of the tube. The Stokes sedi-
mentation velocity is here 2.5 mmrs01 . curve in Fig. 8b corresponding to the accumulation of 20

The pulsed NMR spectrometer is a 100-Mhz Brucker configurations is an estimate of the ensemble average of the
ASX-100. A vertical superconducting coil generates a mag- squared modulus of the magnetization. This curve can be
netic field of 2.35 T. A diagram of the spectrometer is shown interpreted from Eq. [43]. The first term of the expression
in Fig. 1. We have already described the detection and gradi- appears as the largest peak, the base of which is visible in
ent coils in the first section. The maximum gradient field is the left-hand side of Fig. 8. This term corresponds to the
0.88 T/m, this value being obtained by measuring the molec- direct signal. The second term, which depends on the struc-
ular diffusion coefficient of water. The NMR sequence is ture of the medium, appears as the remaining part of the
shown in Fig. 6. This is a gradient echo sequence equivalent curve and is characterized by the second-largest peak. In
to the sequence used in the theoretical calculation displayed both graphs, the signal vanishes right after the second peak.
in Fig. 2. The squared modulus of the magnetization must This behavior reflects the first zero of the form factor F̃(kR)
be averaged over many configurations in order to obtain a (see Fig. 9) which is a multiplicative factor in the structure
significant ensemble average. For that reason, we use several signal in the second term of Eq. [43]. The zero is obtained
tubes containing the same sediment, and for each tube we for kR Å 4.49, and we give in Table 1 values of the corre-
measure the magnetization at different vertical positions. As sponding modulus of the wave vector k for several values
was shown in the first section, the structure signal is 106 of the diameter of the spheres. The actual experimental value
lower than the direct signal. We therefore accumulate the is k Å 0.041 mm01 , which in Table 1 is associated with a
signal 2000 times, in order to extract the interesting part
from the noise.

The free induction decay (FID) shown in Fig. 7a is char-
acterized by a relaxation time T*2 . The curve oscillates be-
cause of the existence of two different resonance frequencies
in the NMR spectrum of the liquid. These oscillations are a
hindrance for the signal. In order to eliminate them, the same
signal is superimposed with a delay corresponding to half a
period of the oscillations. This period is 1.6 ms; the duration
D2 (cf Fig. 6) in the second experiment is D2in / 0.8 ms,
where D2in is the duration of the first experiment. The result
of the superposition (by adjusting a coefficient for minimiz-
ing the oscillations) is shown in Fig. 7b. The averaged
squared modulus of the magnetization is divided by the cor-
rected FID.

FIG. 8. Experimental results for the squared magnetization modulus.
The experimental data for the squared modulus of the The curves are normalized so that the value of the amplitude of the second

magnetization are shown in Fig. 8. Figure 8a displays the largest peak is 1. (a) Typical result using a single configuration in particles.
(b) Accumulation over 20 different configurations.curve corresponding to a single configuration, whereas the
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FIG. 9. Form factor F̃(kR) . The first zero occurs for kR Å 4.49.

diameter of 220 mm. This result is in good agreement with
the value of the mean diameter of the sediment (240 mm),

FIG. 10. Comparison between the first extinction of the experimentalthe difference being less than 10%. The influence of the
result with the form factor of particles of diameter 220 mm and the formparticle size polydispersity on the form factor can be taken
factor of an ensemble of particles with a Gaussian size distribution d Åinto account. A Gaussian distribution of sizes with a mean
240 { 10 mm. The amplitude of the form factors is adjusted to the experi-

diameter of 240 mm and a standard deviation of 10 mm gives mental curve.
the form factor represented in Fig. 10, this size distribution
being a model for the experimental one which is determined
by optical microscopy. The amplitude of this function is

interactions are taken into account. The solution of Percus–adapted in order to compare it to the experimental result
Yevick is well known, is analytic, and is valid even at highclose to the extinction. In this case, the shape of the form
concentrations (13) .factor approaches the behavior of the experimental curve

The ensemble average of the squared modulus of the mag-with a good agreement.
netization is given by Eq. [43]. In order to calculate theThe NMR technique has thus been proved efficient for
second term in the right-hand side, that is, the structurestudying the characteristics of particle size in a suspension.
signal, the Fourier transform of the function h(r) Å g(r)It should be emphasized that the form factor has to be known
0 1 must be estimated. h(r) can be simplified by assumingwith good precision, since it multiplies the measured struc-
that the pair distribution function does not depend on theture factor in the expression of the signal. The influence of
direction of the position vector r . The structure signal thenthe polydispersity may also make the determination of the
becomesstructure signal difficult. Moreover, we have shown that the

signal is related to the pair distribution function. As this pair
distribution function may be obtained for an ensemble of

Mst Å r 2
0£V fFH 2(kR) S1 / f

£

hH (k)D , [46]spheres by the theory of Percus–Yevick, we now consider
the NMR signal corresponding to this model.

PERCUS–YEVICK MODEL FOR THE CALCULATION OF in which h̃(k) is the Fourier transform of h(r) . The expres-
THE SQUARED MODULUS OF THE MAGNETIZATION sion of the function h̃(k) for an ensemble of hard spheres

using the Percus–Yevick approximation is given by MandelAn equilibrium distribution of hard spheres is well de-
scribed by the Percus–Yevick theory, in which only pair et al. (14) . The analytical formulae are recalled in the Ap-

pendix.
The squared modulus of the magnetization has been calcu-TABLE 1

lated for volume fractions ranging from 5% to 55%. TheValues of the Modulus of the Wave Vector k Corresponding to
results are shown in Fig. 11. The curves are characterizedthe First Zero of the Shape Function, for Different Values of the

Diameter of the Spheres by a large peak. The amplitude of this peak increases with
the concentration, and its position is proportional to f 1/3 .

Diameter (mm) 200 220 240 260 280 The experimental compacity of the packing is measured by
k (mm01) 0.0450 0.0410 0.0375 0.0340 0.031

NMR. The magnetic signal obtained immediately after tilting
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ent and then averaged over all possible configurations acces-
sible to the particles. The suspension is assumed to be ho-
mogenous, and in order to simplify the interpretation of the
result we considered spherical particles of the same size. The
averaged squared modulus of the magnetization obtained in
this case is related to the pair distribution function of the
particles g(r) (see [43]) . This expression is analogous to
the one that gives the scattered intensity I(q) in the classical
scattering techniques (X-rays, light, neutrons) as a function
of the wave vector q . In the present NMR technique, the
wave vector denoted k is given by k Å gGt , where g is the
gyromagnetic ratio, G the intensity of the pulsed field gradi-FIG. 11. The Percus–Yevick model. The structure signal fF(kR) 2 S(k)

for suspensions of different concentrations of particles from 5% to 55% is ent, and t the duration of application of this gradient. The
represented as a function of the modulus of the wave vector k Å gGt . exploration of the k-space is thus obtained by simply mea-
F(kR) is the form factor of an ensemble of spheres of diameter 220 mm. suring the magnetization as a function of time. As in the

classical expression of I(q) , the structure factor S(k) de-
fined as the Fourier transform of 10 g(r) appears multiplied
by F̃ 2(kR) , where F̃(kR) is the form factor, the Fourierthe magnetization onto the horizontal plane is proportional
transform of a function characteristic of the shape of theto the number of spins located in the measurement volume.
particles. The first term in the expression [43] containsMeasuring the signal for the packings and dividing it by the
f̃ (kh) , the Fourier transform of the apparatus function whichsignal generated by the liquid free of particles then provides
describes the sensitivity of the detection coil of the spectrom-the compactness of the sediment. The experimental value is
eter and defines the measurement zone. This term, which0.56{ 0.01. The experimental data for the ensemble average
corresponds to the nonscattered rays in the classical scatter-of the squared modulus of the magnetization are compared
ing techniques, is usually omitted. For the NMR technique,to the results calculated from the Percus–Yevick theory us-
however, we show that the apparatus function can screening the experimental volume fraction of particles in Fig. 12.
the interesting part of the signal if its shape is not adapted.The general shape of both curves is similar. More precisely,

The range of particles sizes accessible by the NMR tech-the position of the experimental peak corresponds to the
nique is 10 mm to 1 mm. It thus completes the range of themodeled one from Percus–Yevick theory when the calcula-
classical scattering techniques, which is 0.5 Å to 5 mm.tion is made with a volume fraction of 0.57 { 0.01. This

The technique is validated by studying packings of spheresvalue is in good agreement with the experimental compacity
of mean diameter 240 mm. The spheres are embedded in aof 0.56.
liquid rich in protons and packings are obtained by sedimen-In conclusion, the Percus–Yevick theory thus gives a
tation of the particles. In the case of the scattering tech-good description of the experimental squared modulus of
niques, the number of particles is sufficiently important andthe magnetization. However, this description is not compre-

hensive: First, it only takes into account pair interactions.
Second, since the positions of the spheres in the settling
sediment depend on the many-particle hydrodynamic inter-
actions during all preceding phases of sedimentation, the
resulting configurations should be in principle different from
the ones in a completely random model.

A fully comprehensive model of the settling sediment
should take into account the many-particle hydrodynamic
interactions (15) together with the interactions with the
walls, which is not yet achieved.

CONCLUSION

We have developed a novel NMR technique particularly
adapted to the study of the structure of systems of particles

FIG. 12. Ensemble average of the squared modulus of the magnetiza-
in a liquid. The modulus of the magnetization due to the tion: comparison between the experimental curve (a) and the model using
protons of the liquid (with particles containing no proton) Percus–Yevick approximation with a volumic fraction of 56% (b). The

curves are adjusted so the amplitude of the peak is equal to 1.is calculated in the presence of a constant pulsed field gradi-
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a single measurement gives an averaged value. In this experi- where c̃(k) , the Fourier transform of the indirect correlation
function c(r) , may be expanded asment, however, we have to cumulate the results for a number

of different packings in order to average the squared modulus
cI (k) Å d 3(cI 1(kd) / cI 2(kd) / cI 3(kd)) , [49]of the magnetization. The general shape for the experimental

data of the averaged squared modulus of the magnetization
in whichdepends on the pair distribution function. It is found to be

in good agreement with a model based on the Percus–Yevick
approximation. We also obtain the mean diameter and the cI 1(kd) Å F0 4pl1

(kd)3G [sin(kd) 0 kd cos(kd)]
compactness of the packings from the experiments, and in
this way confirm the validity of the NMR technique.

cI 2(kd) Å F0 24pl2

(kd)4 G [2kd sin(kd)These results are an incentive to study various other sys-
tems with particles of sizes ranging from 10 mm to 1 mm,
such as non-Brownian suspensions, fluidized beds, and po- 0 ((kd)2 0 2)cos(kd) 0 2]
rous media. In the case of suspensions and fluidized beds,
the particles are in motion, and the necessary condition for cI 3(kd) Å F0 2pl1

(kd)6G {[0(kd)4 / 12(kd)2 0 24]
using NMR is that the displacement of the particles during
the NMR sequence be small compared to their diameter. If 1 cos(kd) / [4(kd)3 0 24kd]
this condition is verified, the averaged squared modulus of
the magnetization gives information about the pair distribu- 1 sin(kd) / 24}. [50]
tion function which depends on the hydrodynamic interac-

Here d is the diameter of the particles, and n Å 6f/pd 3.tions between particles. There is a lack of theory for this
dependence in inhomogenous and/or concentrated suspen-
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